

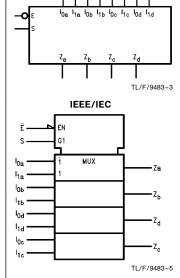
54F/74F157A Quad 2-Input Multiplexer

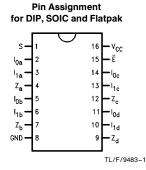
General Description

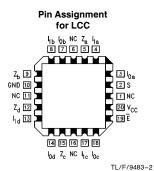
The 'F157A is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (non-inverted) form. The 'F157A can also be used to generate any four of the 16 different functions to two variables.

Features

■ Guaranteed 4000V minimum ESD protection


Commercial	Military	Package Number	Package Description		
74F157APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line		
	54F157ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line		
74F157ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC		
74F157ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ		
	54F157AFM (Note 2)	W16A	16-Lead Cerpack		
	54F157ALM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


 $\textbf{Note 2:} \ \textbf{Military grade device with environmental and burn-in processing.} \ \textbf{Use suffix} = \textbf{DMQB, FMQB and LMQB.}$

Logic Symbols

Connection Diagrams

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	HIGH/LOW Out			
I _{0a} -I _{0d}	Source 0 Data Inputs	1.0/1.0	20 μA/-0.6 mA		
I _{1a} -I _{1d}	Source 1 Data Inputs	1.0/1.0	20 μA/-0.6 mA		
Ē	Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA		
S	Select Input	1.0/1.0	20 μA/ – 0.6 mA		
Z_a-Z_d	Outputs	50/33.3	-1 mA/20 mA		

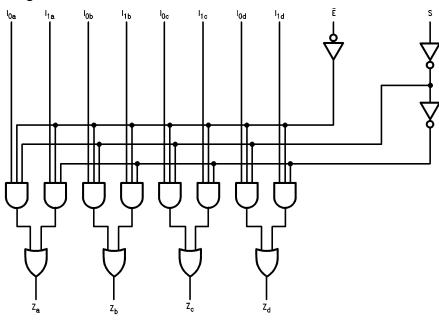
Functional Description

The 'F157A is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input ($\overline{\rm E}$) is active LOW. When $\overline{\rm E}$ is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The 'F157A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$Z_n = \overline{E} \bullet (I_{1n} S + I_{0n} \overline{S})$$

A common use of the 'F157A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F157A can generate any four of the

16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.


Truth Table

	Output			
Ē	s	I ₀	I ₁	Z
Н	Х	Х	Х	L
L	Н	Χ	L	L
L	Н	Χ	Н	Н
L	L	L	Χ	L
L	L	Н	Χ	Н

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Logic Diagram

TL/F/9483-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{CC} \\ \text{TRI-STATE} \tiny{\$} \text{ Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

ESD Last Passing Voltage (Min)
4000V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

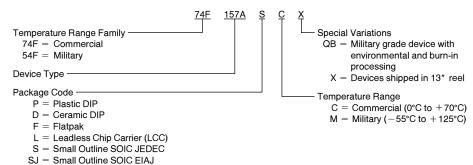
Recommended Operating Conditions

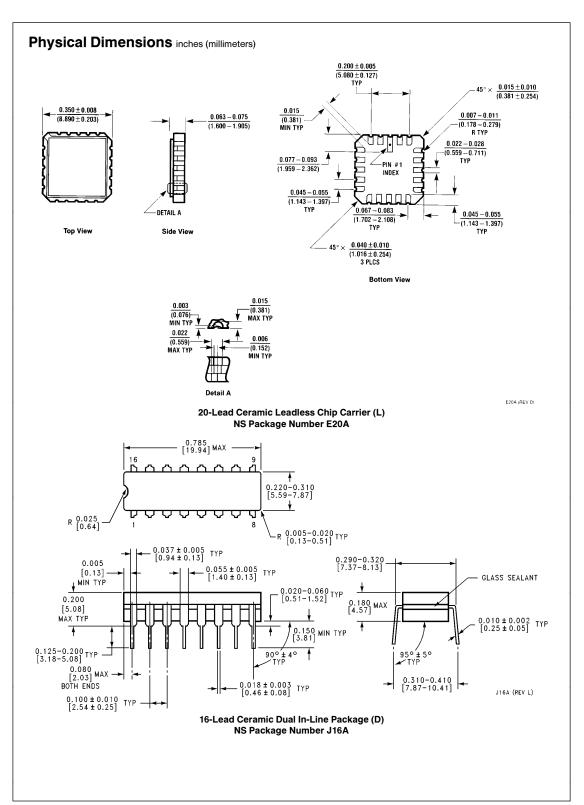
Free Air Ambient Temperature

Supply Voltage

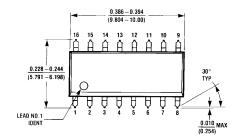
Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

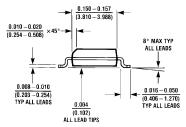
DC Electrical Characteristics

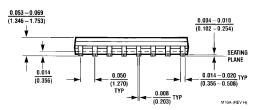

Symbol	Parameter -		54F/74F			Units	v _{cc}	Conditions	
Symbol			Min	Тур	Max	Oilles	VCC	Conditions	
V _{IH}	Input HIGH Voltage					٧		Recognized as a HIGH Signal	
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal		
V_{CD}	Input Clamp Diode Volta	age			-1.2	٧	Min	$I_{\text{IN}} = -18 \text{ mA}$	
V _{OH}	Output HIGH 54F 10% V _{CC} Voltage 74F 10% V _{CC} 74F 5% V _{CC}		2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
Ios	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CCH}	Power Supply Current			15	23	mA	Max	$V_O = HIGH$	
I _{CCL}	Power Supply Current		15	23	mA	Max	$V_O = LOW$		

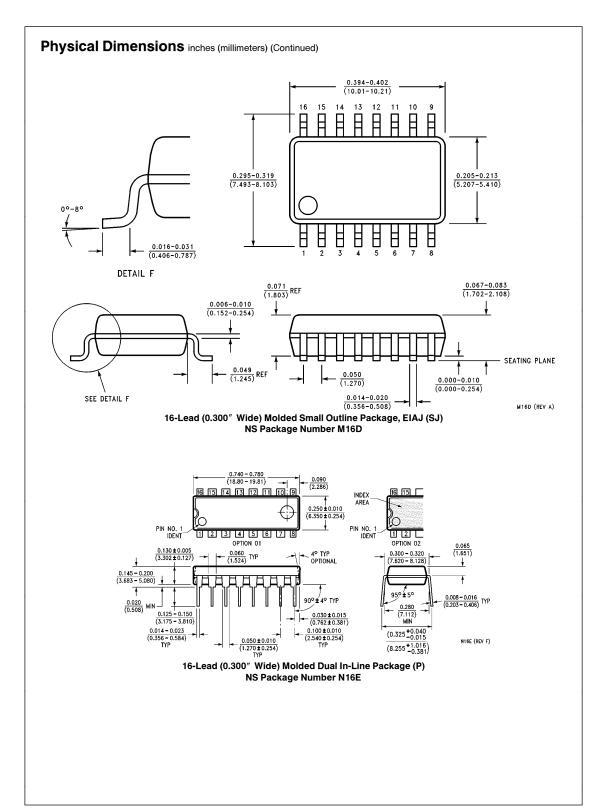

AC Electrical Characteristics

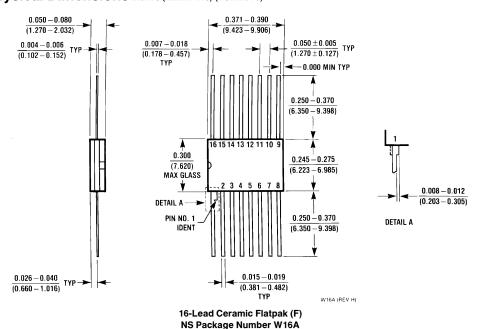
Symbol	Parameter				54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max]
t _{PLH}	Propagation Delay S to Z _n	4.0 3.0	7.0 5.0	10.0 7.0	4.0 3.0	12.0 9.0	4.0 3.0	11.0 8.0	ns
t _{PLH}	Propagation Delay E to Z _n	5.0 2.5	7.0 4.5	9.5 6.5	5.0 2.5	13.0 7.5	5.0 2.5	11.0 7.0	ns
t _{PLH}	Propagation Delay I _n to Z _n	2.5 2.5	4.5 4.0	6.0 5.5	2.5 1.5	7.5 7.5	2.5 2.0	6.5 7.0	ns


Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:




Physical Dimensions inches (millimeters) (Continued)



16-Lead (0.150" Wide) Molded Small Outline Package, JEDEC (S) NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Fkon; Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Mellbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

74F157ASJ - http://www.ti.com/product/74f157asj?HQS=TI-null-null-dscatalog-df-pf-null-wwe

74F157ASC - http://www.ti.com/product/74f157asc?HQS=TI-null-null-dscatalog-df-pf-null-wwe

74F157APC - http://www.ti.com/product/74f157apc?HQS=TI-null-null-dscatalog-df-pf-null-wwe