


# DECADE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS290 and SN54/74LS293 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS290) or divide-by-eight (LS293) section which are triggered by a HIGH-to-LOW transition on the <u>clock</u> inputs. Each section can be used separately or tied together (Q to CP)to form BCD, Bi-quinary, or Modulo-16 counters. Both of the counters have a 2-input gated Master Reset (Clear), and the LS290 also has a 2-input gated Master Set (Preset 9).

- Corner Power Pin Versions of the LS90 and LS93
- · Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

### **CONNECTION DIAGRAM DIP (TOP VIEW)**



### NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

# SN54/74LS290 SN54/74LS293

## DECADE COUNTER; 4-BIT BINARY COUNTER

LOW POWER SCHOTTKY



J SUFFIX CERAMIC CASE 632-08



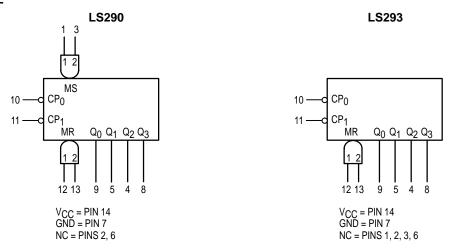
N SUFFIX PLASTIC CASE 646-06



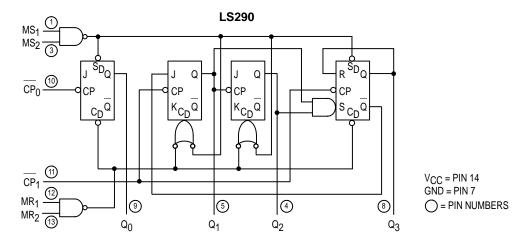
D SUFFIX SOIC CASE 751A-02

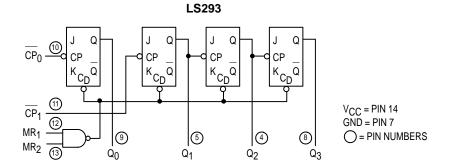
#### ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC


#### PIN NAMES LOADING (Note a)

|                 |                                                            | HIGH      | LOW          |
|-----------------|------------------------------------------------------------|-----------|--------------|
| CP <sub>0</sub> | Clock (Active LOW going edge) Input to ÷2 Section.         | 0.05 U.L. | 1.5 U.L.     |
| <u>CP</u> 1     | Clock (Active LOW going edge) Input to ÷5 Section (LS290). | 0.05 U.L. | 2.0 U.L.     |
| CP1             | Clock (Active LOW going edge) Input to ÷8 Section (LS293). | 0.05 U.L. | 1.0 U.L.     |
| MR1, MR2        | Master Reset (Clear) Inputs                                | 0.5 U.L.  | 0.25 U.L.    |
| MS1, MS2        | Master Set (Preset-9, LS290) Inputs                        | 0.5 U.L.  | 0.25 U.L.    |
| Q0              | Output from ÷2 Section (Notes b & c)                       | 10 U.L.   | 5 (2.5) U.L. |
| Q1, Q2, Q3      | Outputs from ÷5 & ÷8 Sections (Note b)                     | 10 U.L.   | 5 (2.5) U.L. |


## NOTES:


- a) 1 TTL Unit Load (U.L.) = 40  $\mu$ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.
- c) The Q<sub>0</sub> Outputs are guaranteed to drive the full fan-out plus the CP<sub>1</sub> Input of the device.

#### **LOGIC SYMBOL**



## **LOGIC DIAGRAMS**





#### **FUNCTIONAL DESCRIPTION**

The LS290 and LS293 are 4-bit ripple type Decade, and 4-Bit Binary counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS290) or divide-by-eight (LS293) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q<sub>0</sub> output of each device is designed and specified to drive the rated fan-out plus the CP<sub>1</sub> input of the device.

A gated AND asynchronous Master Reset (MR $_1 \cdot MR_2$ ) is provided on both counters which overrides the clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set (MS $_1 \cdot MS_2$ ) is provided on the LS290 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

#### LS290

A. BCD Decade (8421) Counter — the  $\overline{\text{CP}}_1$  input must be

- externally connected to the  $Q_0$  output. The  $\overline{CP_0}$  input receives the incoming count and a BCD count sequence is produced.
- B. Symmetrical Bi-quinary Divide-By-Ten Counter The Q<sub>3</sub> output must be externally connected to the CP<sub>0</sub> input. The input count is then applied to the CP<sub>1</sub> input and a divide-by-ten square wave is obtained at output Q<sub>0</sub>.
- C. Divide-By-Two and Divide-By-Five Counter No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function ( $CP_0$  as the input and  $Q_0$  as the output). The  $CP_1$  input is used to obtain binary divide-by-five operation at the  $Q_3$  output.

## LS293

- A. 4-Bit Ripple Counter The output Q<sub>0</sub> must be externally connected to input CP<sub>1</sub>. The input count pulses are applied to input CP<sub>0</sub>. Simultaneous division of 2, 4, 8, and 16 are performed at the Q<sub>0</sub>, Q<sub>1</sub>, Q<sub>2</sub>, and Q<sub>3</sub> outputs as shown in the truth table.
- B. 3-Bit Ripple Counter The input count pulses are applied to input CP<sub>1</sub>. Simultaneous frequency divisions of 2, 4, and 8 are available at the Q<sub>1</sub>, Q<sub>2</sub>, and Q<sub>3</sub> outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

#### **LS290 MODE SELECTION**

| RESET/SET INPUTS |                 |                 |                 |  |                | OUT            | PUTS           |       |  |  |  |
|------------------|-----------------|-----------------|-----------------|--|----------------|----------------|----------------|-------|--|--|--|
| MR <sub>1</sub>  | MR <sub>2</sub> | MS <sub>1</sub> | MS <sub>2</sub> |  | Q <sub>0</sub> | Q <sub>1</sub> | Q <sub>2</sub> | $Q_3$ |  |  |  |
| Н                | Н               | L               | Х               |  | L              | L              | L              | L     |  |  |  |
| Н                | Н               | Χ               | L               |  | L              | L              | L              | L     |  |  |  |
| Х                | Х               | Н               | Н               |  | Н              | L              | L              | Н     |  |  |  |
| L                | Х               | L               | Х               |  | Count          |                |                |       |  |  |  |
| Х                | L               | Χ               | L               |  | Count          |                |                |       |  |  |  |
| L                | Х               | Χ               | L               |  | Count          |                |                |       |  |  |  |
| Х                | L               | L               | Х               |  |                | Co             | ount           |       |  |  |  |

LS290 BCD COUNT SEQUENCE

| COUNT |       | OUTPUT         |       |       |  |  |  |  |  |  |
|-------|-------|----------------|-------|-------|--|--|--|--|--|--|
| COONT | $Q_0$ | Q <sub>1</sub> | $Q_2$ | $Q_3$ |  |  |  |  |  |  |
| 0     | L     | L              | L     | L     |  |  |  |  |  |  |
| 1     | Н     | L              | L     | L     |  |  |  |  |  |  |
| 2     | L     | Н              | L     | L     |  |  |  |  |  |  |
| 3     | Н     | Н              | L     | L     |  |  |  |  |  |  |
| 4     | L     | L              | Н     | L     |  |  |  |  |  |  |
| 5     | Н     | L              | Н     | L     |  |  |  |  |  |  |
| 6     | L     | Н              | Н     | L     |  |  |  |  |  |  |
| 7     | Н     | Н              | Н     | L     |  |  |  |  |  |  |
| 8     | L     | L              | L     | Н     |  |  |  |  |  |  |
| 9     | Н     | L              | L     | Н     |  |  |  |  |  |  |

NOTE: Output Q<sub>0</sub> is connected to Input CP<sub>1</sub> for BCD count.

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

#### LS293 MODE SELECTION

| RESET           | INPUTS          | OUTPUTS        |                |       |       |  |  |  |  |  |  |
|-----------------|-----------------|----------------|----------------|-------|-------|--|--|--|--|--|--|
| MR <sub>1</sub> | MR <sub>2</sub> | Q <sub>0</sub> | Q <sub>1</sub> | $Q_2$ | $Q_3$ |  |  |  |  |  |  |
| Н               | Н               | L              | L              | L     | L     |  |  |  |  |  |  |
| L               | Н               |                | Count          |       |       |  |  |  |  |  |  |
| Н               | L               | Count          |                |       |       |  |  |  |  |  |  |
| L               | L               |                | Count          |       |       |  |  |  |  |  |  |

### TRUTH TABLE

| COUNT |                | ou    | TPUT  |       |
|-------|----------------|-------|-------|-------|
| COOM  | Q <sub>0</sub> | $Q_1$ | $Q_2$ | $Q_3$ |
| 0     | L              | L     | L     | L     |
| 1     | Н              | L     | L     | L     |
| 2     | L              | Н     | L     | L     |
| 3     | Н              | Н     | L     | L     |
| 4     | L              | L     | Н     | L     |
| 5     | Н              | L     | Н     | L     |
| 6     | L              | Н     | Н     | L     |
| 7     | Н              | Н     | Н     | L     |
| 8     | L              | L     | L     | Н     |
| 9     | Н              | L     | L     | Н     |
| 10    | L              | Н     | L     | Н     |
| 11    | Н              | Н     | L     | Н     |
| 12    | L              | L     | Н     | Н     |
| 13    | Н              | L     | Н     | Н     |
| 14    | L              | Н     | Н     | Н     |
| 15    | Н              | Н     | Н     | Н     |

Note: Output Q<sub>0</sub> connected to input CP<sub>1</sub>.

## **GUARANTEED OPERATING RANGES**

| Symbol         | Parameter                           |          | Min         | Тур        | Max         | Unit |
|----------------|-------------------------------------|----------|-------------|------------|-------------|------|
| Vcc            | Supply Voltage                      | 54<br>74 | 4.5<br>4.75 | 5.0<br>5.0 | 5.5<br>5.25 | V    |
| T <sub>A</sub> | Operating Ambient Temperature Range | 54<br>74 | -55<br>0    | 25<br>25   | 125<br>70   | °C   |
| ЮН             | Output Current — High               | 54, 74   |             |            | -0.4        | mA   |
| lOL            | Output Current — Low                | 54<br>74 |             |            | 4.0<br>8.0  | mA   |

## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

|                 |                                                          |        |     | Limits |                              |      |                                                |                                                             |  |
|-----------------|----------------------------------------------------------|--------|-----|--------|------------------------------|------|------------------------------------------------|-------------------------------------------------------------|--|
| Symbol          | Parameter                                                |        | Min | Тур    | Max                          | Unit | Test Conditions                                |                                                             |  |
| VIH             | Input HIGH Voltage                                       |        | 2.0 |        |                              | V    | Guaranteed Input HIGH Voltage for All Inputs   |                                                             |  |
| V               | Input LOW Voltage                                        | 54     |     |        | 0.7                          | V    | Guaranteed Input                               | LOW Voltage for                                             |  |
| V <sub>IL</sub> | input LOW voitage                                        | 74     |     |        | 0.8                          | V    | All Inputs                                     |                                                             |  |
| VIK             | Input Clamp Diode Voltage                                | •      |     | -0.65  | -1.5                         | V    | V <sub>CC</sub> = MIN, I <sub>IN</sub> =       | : –18 mA                                                    |  |
| Vou             | Output HICH Voltage                                      | 54     | 2.5 | 3.5    |                              | V    | V <sub>CC</sub> = MIN, I <sub>OH</sub>         | = MAX, V <sub>IN</sub> = V <sub>IH</sub>                    |  |
| VOH             | Output HIGH Voltage                                      | 74     | 2.7 | 3.5    |                              | ٧    | or V <sub>IL</sub> per Truth Table             |                                                             |  |
| M               | Output I OW Valtage                                      | 54, 74 |     | 0.25   | 0.4                          | ٧    | I <sub>OL</sub> = 4.0 mA                       | $V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$ |  |
| VOL             | Output LOW Voltage                                       | 74     |     | 0.35   | 0.5                          | ٧    | I <sub>OL</sub> = 8.0 mA                       | per Truth Table                                             |  |
| I               | Innut I II Cl I Current                                  |        |     |        | 20                           | μΑ   | V <sub>CC</sub> = MAX, V <sub>IN</sub>         | = 2.7 V                                                     |  |
| lН              | Input HIGH Current                                       |        |     |        | 0.1                          | mA   | V <sub>CC</sub> = MAX, V <sub>IN</sub>         | = 7.0 V                                                     |  |
| I <sub>IL</sub> | Input LOW Current  MS, MR  CP0  CP1 (LS290)  CP1 (LS293) |        |     |        | -0.4<br>-2.4<br>-3.2<br>-1.6 | mA   | V <sub>CC</sub> = MAX, V <sub>IN</sub> = 0.4 V |                                                             |  |
| los             | Short Circuit Current (Note                              | 1)     | -20 |        | -100                         | mA   | V <sub>CC</sub> = MAX                          |                                                             |  |
| Icc             | Power Supply Current                                     |        |     |        | 15                           | mA   | V <sub>CC</sub> = MAX                          |                                                             |  |

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ( $T_A = 25$ °C,  $V_{CC} = 5.0$  V,  $C_L = 15$  pF)

|                                      |                                                                      | Limits |          |          |     |          |          |      |
|--------------------------------------|----------------------------------------------------------------------|--------|----------|----------|-----|----------|----------|------|
|                                      |                                                                      | LS290  |          | LS293    |     |          |          |      |
| Symbol                               | Parameter                                                            | Min    | Тур      | Max      | Min | Тур      | Max      | Unit |
| fMAX                                 | CP <sub>0</sub> Input Clock Frequency                                | 32     |          |          | 32  |          |          | MHz  |
| fMAX                                 | CP <sub>1</sub> Input Clock Frequency                                | 16     |          |          | 16  |          |          | MHz  |
| tPLH<br>tPHL                         | Propagation Delay,<br>CP <sub>0</sub> Input to Q <sub>0</sub> Output |        | 10<br>12 | 16<br>18 |     | 10<br>12 | 16<br>18 | ns   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | CP <sub>0</sub> Input to Q <sub>3</sub> Output                       |        | 32<br>34 | 48<br>50 |     | 46<br>46 | 70<br>70 | ns   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | CP <sub>1</sub> Input to Q <sub>1</sub> Output                       |        | 10<br>14 | 16<br>21 |     | 10<br>14 | 16<br>21 | ns   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | CP <sub>1</sub> Input to Q <sub>2</sub> Output                       |        | 21<br>23 | 32<br>35 |     | 21<br>23 | 32<br>35 | ns   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | CP <sub>1</sub> Input to Q <sub>3</sub> Output                       |        | 21<br>23 | 32<br>35 |     | 34<br>34 | 51<br>51 | ns   |
| <sup>t</sup> PHL                     | MS Input to Q <sub>0</sub> and Q <sub>3</sub> Outputs                |        | 20       | 30       |     |          |          | ns   |
| <sup>t</sup> PHL                     | MS Input to Q <sub>1</sub> and Q <sub>2</sub> Outputs                |        | 26       | 40       |     |          |          | ns   |
| <sup>t</sup> PHL                     | MR Input to Any Output                                               |        | 26       | 40       |     | 26       | 40       | ns   |

## AC SETUP REQUIREMENTS ( $T_A = 25^{\circ}C$ , $V_{CC} = 5.0 \text{ V}$ )

|                  |                             |     | Limits |     |           |      |     |  |
|------------------|-----------------------------|-----|--------|-----|-----------|------|-----|--|
|                  |                             | LS  | LS290  |     | 290 LS293 |      | 293 |  |
| Symbol           | Parameter                   | Min | Max    | Min | Max       | Unit |     |  |
| tw               | CP <sub>0</sub> Pulse Width | 15  |        | 15  |           | ns   |     |  |
| t <sub>W</sub>   | CP <sub>1</sub> Pulse Width | 30  |        | 30  |           | ns   |     |  |
| tw               | MS Pulse Width              | 15  |        |     |           | ns   |     |  |
| tw               | MR Pulse Width              | 15  |        | 15  |           | ns   |     |  |
| t <sub>rec</sub> | Recovery Time MR to CP      | 25  |        | 25  |           | ns   |     |  |

RECOVERY TIME (t<sub>rec</sub>) is defined as the minimum time required between the end of the reset pulse and the clock transition form HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs.

## **AC WAVEFORMS**

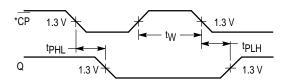



Figure 1

\*The number of Clock Pulses required between the tpHL and tpLH measurements can be determined from the appropriate Truth Tables.

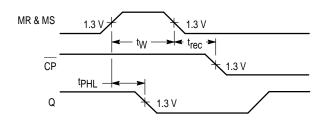



Figure 2

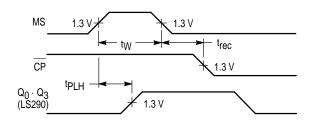



Figure 3